Tuesday 2 December 2014

itemprop='blogPost' itemscope='itemscope' itemtype='http://schema.org/BlogPosting'>

BATTERY

Batteries operate by converting chemical energy into electrical energy through electrochemical discharge reactions. Batteries are composed of one or more cells, each containing a positive electrode, negative electrode, separator, and electrolyte. Cells can be divided into two major classes: primary and secondary

Primary cells are not rechargeable and must be replaced once the reactants are depleted. Secondary cells are rechargeable and require a DC charging source to restore reactants to their fully charged state. Examples of primary cells include carbon-zinc (Leclanche or dry cell), alkaline-manganese, mercuryzinc, silver-zinc, and lithium cells (e.g., lithium-manganese dioxide, lithium-sulfur dioxide, and lithiumthionyl chloride). Examples of secondary cells include lead-lead dioxide (lead-acid), nickel-cadmium, nickel-iron, nickel-hydrogen, nickel-metal hydride, silver-zinc, silver-cadmium, and lithium-ion. For aircraft applications, secondary cells are the most prominent, but primary cells are sometimes used for powering critical avionics equipment (e.g., flight data recorders).

Batteries 

are rated in terms of their nominal voltage and ampere-hour capacity. The voltage rating is based on the number of cells connected in series and the nominal voltage of each cell (2.0 V for leadacid and 1.2 V for nickel-cadmium). The most common voltage rating for aircraft batteries is 24 V. A24-V lead-acid battery contains 12 cells, while a 24-V nickel-cadmium battery contains either 19 or 20 cells (the U.S. military rates 19-cell batteries at 24 V). Voltage ratings of 22.8, 25.2, and 26.4 V are also common with nickel-cadmium batteries, consisting of 19, 20, or 22 cells, respectively. Twelve-volt lead-acid batteries, consisting of six cells in series, are also used in many general aviation aircraft. The ampere-hour (Ah) capacity available from a fully charged battery depends on its temperature, rate of discharge, and age. Normally, aircraft batteries are rated at room temperature (25°C), the C-rate(1-hour rate), and beginning of life. Military batteries, however, often are rated in terms of the end- oflife capacity, i.e., the minimum capacity before the battery is considered unserviceable. Capacity ratings of aircraft batteries vary widely, generally ranging from 3 to 65 Ah.
The maximum power available from a battery depends on its internal construction. High rate cells, for example, are designed specifically to have very low internal impedance as required for starting turbine engines and auxiliary power units (APUs). Unfortunately, no universally accepted standard exists for defining the peak power capability of an aircraft battery. For lead-acid batteries, the peak power typically is defined in terms of the cold-cranking amperes, or CCA rating. For nickel-cadmium batteries, the peak power rating typically is defined in terms of the current at maximum power, or Imp rating. These ratings are based on different temperatures (18°C for CCA, 23°C for Imp), making it difficult to compare different battery types. Furthermore, neither rating adequately characterizes the battery’s initial peak current capability, which is especially important for engine start applications. More rigorous peak power specifications have been included in some military standards. For example, MIL-B-8565/15 specifies the initial peak current, the current after 15 s, and the capacity after 60 s, during a 14-V constant voltage discharge at two different temperatures (24 and26°C). The state-of-charge of a battery is the percentage of its capacity available relative to the capacity when it is fully charged. By this definition, a fully charged battery has a state-of-charge of 100% and a battery with 20% of its capacity removed has a state-of-charge of 80%. The state-of-health of a battery is the percentage of its capacity available when fully charged relative to its rated capacity. For example, a battery rated at 30 Ah, but only capable of delivering 24 Ah when fully charged, will have a state-of-health of24/30 10080%. Thus, the state-of-health takes into account the loss of capacity as the battery ages

Lead-Acid Batteries

Theory of Operation

The chemical reactions that occur in a lead-acid battery are represented by the following equations:
As the cell is charged, the sulfuric acid (H2 SO4) concentration increases and becomes highest when the cell is fully charged. Likewise, when the cell is discharged, the acid concentration decreases and becomes most dilute when the cell is fully discharged. The acid concentration generally is expressed in terms of specific gravity, which is weight of the electrolyte compared to the weight of an equal volume of pure water.
The cell’s specific gravity can be estimated from its open circuit voltage using the following equation:

Specific Gravity (SG)= Open Circuit Voltage (OCV)- 0.84

There are two basic cell types: vented and recombinant. Vented cells have a flooded electrolyte, and the hydrogen and oxygen gases generated during charging are vented from the cell container. Recombinant cells have a starved or gelled electrolyte, and the oxygen generated from the positive electrode during charging diffuses to the negative electrode where it recombines to form water by the following reaction:

Pb + H2SO4 + 1/2O → PbSO4 + H2O

The recombination reaction suppresses hydrogen evolution at the negative electrode, thereby allowing the cell to be sealed. In practice, the recombination efficiency is not 100% and a resealable valve regulates the internal pressure at a relatively low value, generally below 10 psig. For this reason, sealed lead-acid cells are often called “valve-regulated lead-acid” (VRLA) cells.

Nickel-Cadmium Batteries

Theory of Operation

The chemical reactions that occur in a nickel-cadmium battery are represented by the following equations:

There are two basic cell types: vented and recombinant. Vented cells have a flooded electrolyte, and the hydrogen and oxygen gases generated during charging are vented from the cell container. Recombinant cells have a starved electrolyte, and the oxygen generated from the positive electrode during charging diffuses to the negative electrode where it recombines to form cadmium hydroxide by the following reaction:
Cd + H2O + 1/2O→ Cd(OH)
The recombination reaction suppresses hydrogen evolution at the negative electrode, thereby allowing the cell to be sealed. Unlike valve-regulated lead-acid cells, recombinant nickel-cadmium cells are sealed with a high-pressure vent that releases only during abusive conditions. Thus, these cells remain sealed under normal charging conditions. However, provisions for gas escape must still be provided when designing battery cases since abnormal conditions may be encountered periodically (e.g., in the event of a charger failure that causes an overcurrent condition).

My Blogger Tricks

4 comments:

  1. Good informative article. you can check our product GNB FLOODED CLASSIC, Sonnenschein Solar Bloc, Absolute GP Batteries, etc

    ReplyDelete
  2. Nice Writing Of Blog , Hopefully Your Blog will be successful in upcoming day , please keep it Continue Up to date .
    After Searching too many blog finally i got Your Blog by reference of google search engine . My Hobby Is searching Blog That's provide good Information About Battery power enhancer. So I am Sharing Some Blog For People Like Me that is Best in India.

    If You are Looking for some good Battery power product comapny in India
    Alkaline battetry and ultra digital battery .Then Go Through It, Definitely it will be helpful and will make your life easy.
    List of Product that you can visit and Buy
    LR6 Alkaline battery
    AA Alkaline battery for toys
    AA Alkaline battery for remote
    Alkaline batteries for High drain devices
    Best AA Alkaline battery
    LR03 Alkaline battery
    AAA Alkaline battery for oximeter
    C type battery
    D Size Alkaline battery
    LR14 C size Alkaline battery
    Digitrack battery
    AAA Alkaline battery for BP Monitors
    HDD Machine battery
    AAA Alkaline battery for toys
    AAA Alkaline battery for remote


    Thanks For visit:-


    ReplyDelete

  3. Good informative article. you can check our Product 36v lithium golf cart battery,48 volt lithium battery for golf cart etc.

    ReplyDelete
  4. I just found your blog and want to say thank you! What an enjoyable time looking through so many blogs. Thanks for sharing.
    Best EPR Battery Waste Certification Services Company in India

    ReplyDelete